

Delta Electronics Australia

Author: Ryan McKercher Ryan.mckercher@deltaww.com

Contents

Document History	1
Purpose	
Introduction	
Volt Watt response mode description	
Adjusting Volt Watt mode settings	
Connecting PC to the Inverter	
Equipment required	
Adjusting Volt-VAr mode settings	
Victoria Settings Quick Start Guide for Flex	

Document History

Revision	Note	Written	Checked	Date
P1	Preliminary	RM		9/02/19
P2	Volt-watt mode & AU_WP	RM		16/08/19
	Grid code added			
P3	VIC quick start guide added	RM		6/12/2019

Purpose

The purpose of this document is to provide a guide to installer on how to program the Delta RPI series inverters with the power quality response modes shown in AS4777.2 2014. These modes include,

- Volt-Watt Response Mode
- Volt-Var response Mode

_

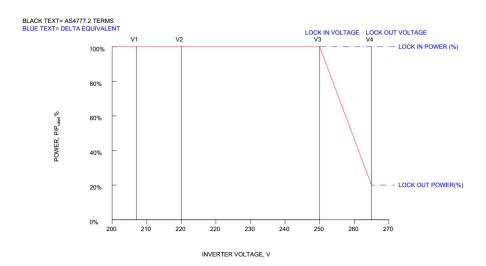
There is also a section to show the installer how to program the inverter with preconfigured settings to meet DNSP requirements. Note that this document does not guarantee compliance and the installer should check each setting against requirements of the grid connection agreement for each individual installation.

Introduction

Solar PV inverters are an uncontrolled energy source and will produce an amount of power which is dependant on the amount of sunlight available, this can cause a destabilizing effect on the voltage within an electrical installation. Traditional generation sources will change their power output in response to commands sent from the DNSP or SCADA equipment, this has the effect of stabilizing the network voltage.

Power quality response modes were introduced in to AS4777.2 2014 in order to help distribution DNSP provide stability to the network with the increasing number of Solar PV Inverters being installed. Previously, if an IES was proposed and the DNSP found through network studies that the IES would either destabilize the network or cause power quality issues to other customers in the local area, the only options were to either export limit the proposed installation, impose a limit on the amount of capacity that was allowed to be installed or not allow the system to be installed at all.

Power Quality modes allow the maximum amount of solar PV generation to be installed without the need for export limitation and reduce the destabilizing effect on the network voltage.

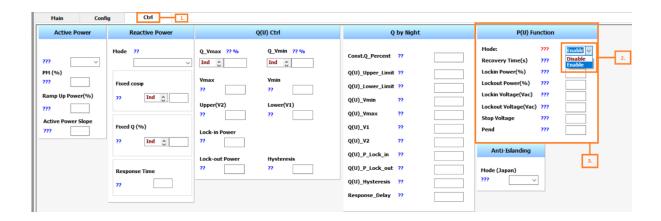

This document describes the process for programing the Delta inverter range with Volt watt and Volt Var response mode settings that may be required by your local DNSP. Please refer to your connection agreement for the specific requirements for your system, but the following documents may be helpful (current 9/2/2019) in understanding the required Volt –Var & Volt-Watt Response mode settings for your local area. There are also some pre-configured grid codes suitable for some DNSP's.

DNSP	System size	Document	Grid Code
Western Power	0-30 kVA	Network Integration	AU_WP
		Guideline: Inverter	
		Embedded Generation	
SAPN	0-30 kVA	TS-129	AU_SA
Ergon/ Energex	0-30 kVA	Micro Embedded	
		Generating	
		Units (0 - ≤30 kVA) –	
		STNW1170	
Ergon/ Energex	30-1500 kVA	Standard for Connection	
		of	

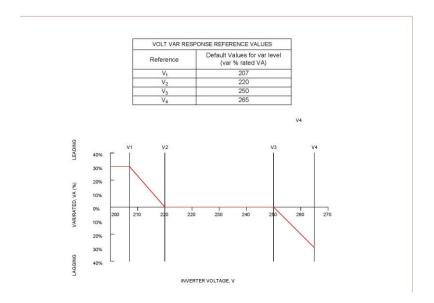
		Embedded Generating	
		Systems	
		(>30 kW to 1,500 kW) to	
		a	
		Distributor's LV Network-	
		STNW1174	
Ausgrid	0-200 kVA	NS194 SECONDARY	
	& 200 kVA & above	SYSTEMS REQUIREMENTS	
		FOR EMBEDDED	
		GENERATORS	

Volt Watt response mode description

This mode is enabled by default and will reduce the output power of the inverter in response to an increasing voltage at the AC terminals of the inverter. The voltage that the inverter produces a given % of the VA rating of the inverter can be adjusted using DSS software or via the LCD on the front of the inverter. By selecting the "AU_2015" grid code, the default AS4777.2 values are programmed as per the table below. The table also shows how each of the parameters shown in AS4777.2 Cl 6.3.2.2 are named, these are the same when using DSS or the LCD screen.


VOLT WATT RESPONSE REFERENCE VALUES AS4777.2 / DELTA EQUIVALENT TERMS					
		JNSE KELEKENGE VALUES AS4111.2			
AS4777.2 Voltage Reference	Delta Reference (Voltage)	AS4777.2 Power reference	Delta Reference (Power)	AS4777.2/ AU2015 Default Value	
V ₁	-	P/P _{rated} (%)@ V ₁	-	100 %	
V ₂	-	P/P _{rated} (%)@ V ₂	-	100 %	
V ₃	Lock in voltage (V)	P/P _{rated} (%)@ V ₃	Lock in Power (V)	100 %	
V ₄	Lock out voltage (V)	P/P _{rated} (%)@ V ₄	Lock out Power (V)	20 %	

Adjusting Volt Watt mode settings


*** Note that the Volt-Watt mode parameters have different meanings for M-Series and H-Series inverters, this section applies to M6A,M10A and M30A inverters. If you are configuring the parameters of a H2.5,H3,H3A,H4A or H5A inverter, please refer to the "Victoria quick start guide for flex" on page 6.***

- 1. Open CTRL (Control) tab in DSS software.
- 2. In the **P(U) function** section, expand the **mode** drop down box and ensure that **enabled** is selected.
- 3. In the **P(U) function** mode section, each field has the meaning below.

Recovery time

<u>Volt-Var response mode</u> — This mode is enabled by default and will sink reactive power in response to an increasing voltage (inductive) and supply reactive power in response to a decrease in voltage (capacitive). The voltage at which the inverter should sink/supply a reactive power at a given % of the VA rating of the inverter can be adjusted, the default values are given in the table below.

Connecting PC to the Inverter

Equipment required

The equipment required is different depending on the inverter model,

Inverter	RPI M30A,M10A,M6A, E5	RPI H2.5A, H3A,H4A,H5A	RPI Mini - H2.5A,
			H3A,H4A,H5A
Equipment required	 Opto isolated 	- USB-RS485	- Wifi

USB-RS485	Converter	Enabled
Converter	 PC with USB port 	PC
- PC with USB port		

Note that this guide describes how to adjust the Volt Watt and volt Var response mode settings Using Delta Service software available for download at http://support.delta-es.com.au/solar/. For RPI M30A,M10A,M6A inverters, these modes can be adjusted by using the buttons on the LCD panel on the front of the inverter, refer to the user manual for further details.

Please install the latest version of Delta Service software and connect your inverter to your PC, for details on how to do this please refer to document.

- How to install DSS and connect inverter to PC.

Adjusting Volt-VAr mode settings

- 1. Open CTRL (Control) tab in DSS software.
- 2. In the **Reactive Power** section, expand the **mode** drop down box and ensure that **Q(U)** is selected.
- 3. In the Q(U) Ctrl section, each field has the meaning below.

Q_Vmax

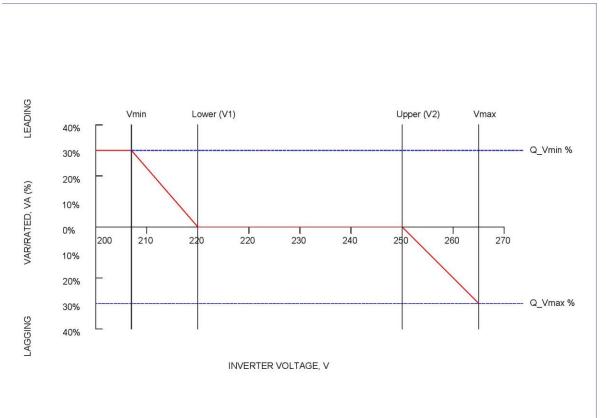
Ind/Cap- the inverter is either sinking (**ind**-inductor) or sourcing (**cap** -capacitor) at Vmax % - % of the VA rating of the inverter that will be sourced/sinked in VAR's at Vmax

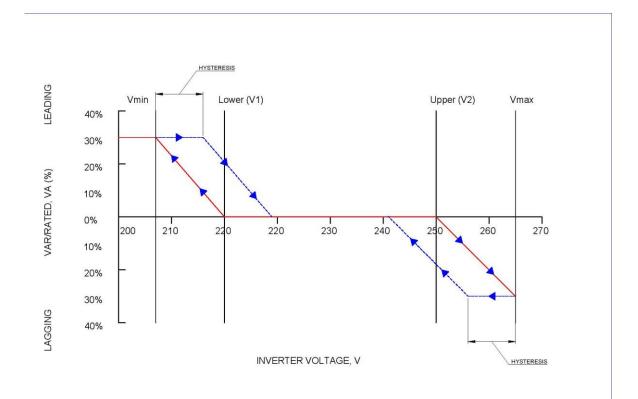
Q_Vmin

Ind/Cap- the inverter is either sinking (ind-inductor) or sourcing (cap-capacitor) at Vmin% of the VA rating of the inverter that will be sourced/sinked in VAR's at Vmin

Lock in power – The output power must greater than this value before Q(U) mode is activated.

Lock out Power - The output power must greater than this value before Q(U) mode is activated.




Figure 1 Explanation of Qv_min & Qv_max values

Hysteresis - The effect of Hysteresis value depends on the current AC voltage.

If the voltage is in the range;

V2(upper)<**AC Voltage**<**Vmax** – the AC Voltage would need to reduce by at least the **hysteresis** value before the reactive power value was to reduce.

V1(lower)>AC Voltage>Vmin – the AC Voltage would need to increase by at least the **hysteresis** value before the reactive power value was to reduce.

Victoria Settings Quick Start Guide for Flex

To commission the Flex (H2.5,H3,H3A,H4A or H5A) inverter with the settings below, please follow the instructions as follows. You will need a laptop running windows versions XP or greater and with Wifi capability. It is recommended that you download and install DSS (Delta Service software) from the following link before going to site, the zip file password is 1234.

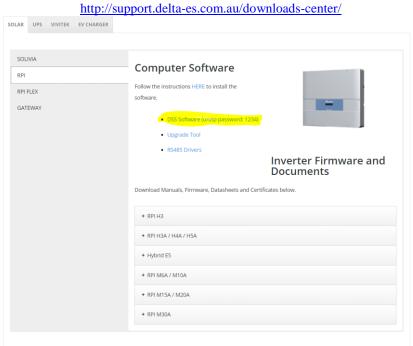


Table 1: Mandatory: volt-var response mode settings

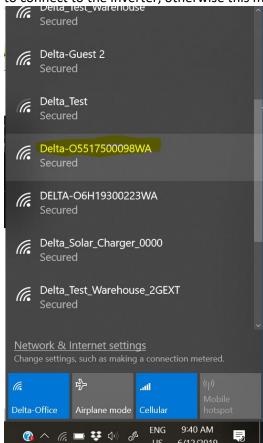
Reference	Voltage in Volts	Var % Rated VA
V1	208	44% leading (exporting vars)
V2	220 (default)	0%
V3	241	0%
V4	253	44% lagging (sinking vars, 3.7% per volt, 0.9 power factor)

Table 2: Mandatory volt-watt response mode settings

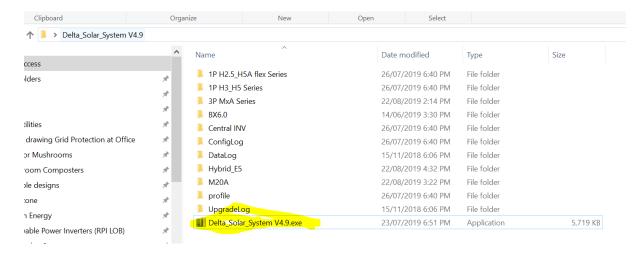
Reference	Voltage in Volts	Power % rated Power
V1	207 (default)	100% (default)
V2	220 (default)	100% (default)
V3	253	100% (default)
V4	259	20% (default, 5.3%/volt)

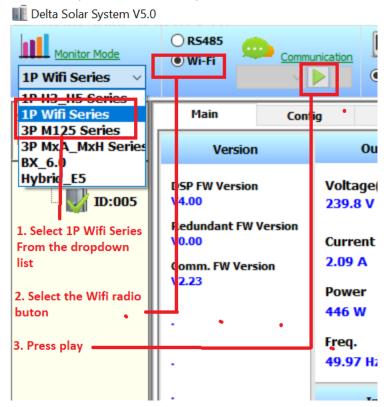
Table 3: Sustained operation for voltage variation

Reference	Voltage
V nom-max	258 volts


1. Commission the Flex inverter according to the quickstart guide provided with the inverter. https://www.deltapvi.com.au/assets/Uploads/H-Series-WiFi-Quick-Start-Online-PDF.pdf

2. If not done before attending site, download DSS from the link as described at the beginning of this section.

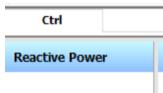

3. Extract DSS from the zip file and store on your desktop.


4. Go to your wifi networks and find the network name with the inverter serial number. The Default network password is DELTASOL. Ensure that no other devices (phones etc) are trying to connect to the inverter, otherwise this may not work.

5. Open "Delta_Solar_System V4.9.exe" file in the folder "Delta_Solar_System V4.9"

6. Once DSS opens, follow the steps below

7. The section below should populate with numbers in blue


8. Click on the "config "tab and enter password 4613

Config4613	
tection	
265.0 \	
0.10 5	ec
253.0 \	/
	265.0 \ 0.10 Se

9. Enter 258 into the field for "U high off slow" and press enter. The value of 255.0V next to the field should briefly turn red and then become blue with the updated value of 258.0V

Uac Prote	ection	Freq. Pro	tection	
U High Off:	265.0 V	F High Off:	52.00 Hz	
U High Off Time:	0.10 Sec	F High Off Time:	0.10 Sec	1. enter 258 and press enter
U High On:	253.0 V	F High On:	50 15 112	
U High Off Slow:	255.0 V 258	F High Off Slow:	70.00 Hz	
U High Off Slow Time	601.00 Sec	F High Off Slow Time:	655.35 Sec	
U High On Slow:	253.0 V	F High On Slow:	70.00 Hz	
U Low Off:	180.0 V	F Low Off:	47.00 Hz	
U Low Off Time:	1.00 Sec	F Low Off Time:	1.00 Sec	
U Low On:	216.0 V	F Low On:	47.50 Hz	
U Low Off Slow:	0.0 V	F Low Off Slow:	0.00 Hz	•
U Low Off Slow Time:	655.35 Sec	F Low Off Slow Time:	655.35 Sec	
U Low On Slow:	0.0 V	F Low On Slow:	0.00 Hz	
Number here	should briefly	y turn red, then	become b	olue.
U High Off Slo	w: 258.	0 V 258		
U High Off Slo	w Time: 601.	00 Sec		
U High On Slo	w: 253.	0 V]	

10. Click the "ctrl" tab

12 | Page

11. Enter the following values in each field, press "enter" after entering, the value shown next to the field should briefly turn red and then turn blue with the correct value as in step 9. All other values can be left as the default settings.

Once this is completed the values shown in blue next to each field should match those shown in the screenshot on the next page.

Section	Setting	Value
Reactive power	Mode	Q(U) Control
Q(U) Ctrl	Q_Vmax	Cap 44
	Q_Vmin	Ind 44
	Vmax	253
	Vmin	208
	Lower(V1)	220
	Upper(V2)	241
P(U)	Lock in voltage	253
	Stop voltage	259

■ Delta Solar System V5.0 O RS485

O Wi-Fi

Send Command

ad ID 5	Main Confi	g Ctrl Reactive Power	Q(U) Ctrl	P(U) Function	P-F Control
Inverters ID:005	Disable VPM (%) 100 % Ramp Up Power(%) 17 %	Mode Q(U) Control Night Mode Q of Pac 24/7 Fixed cosp 1 Ind Fixed Q (%) Ind 0% Ind Response Time 4.00 sec	Q_Vmax Cap 44% Cap \$\display 44\$ Vmax Vmin 253.0 V 253 Upper(V2) 241.0 V 241 Q2 Q3 0 Lock-in Power 20 % Hysteresis 0.0 V QVmin Ind 44% Ind \$\display 44 Vmin 208.0 V 208 Lower(V1) 220.0 V 220 Q2 Q3 0 Lock-out Power 5 % Hysteresis 0.0 V	Mode: Enable Recovery Time(s) 0 sec Lockin Power(%) 100 % Lockout Power(%) 100 % Lockin Voltage(Vac) 253.0 V 253 Lockout Voltage(Vac) 300.0 V Stop Voltage 259.0 V 259 Pend 20 % Response Time 4.00 sec	Over Frequency Mode Gradient (%) Disable 57 % Freq. Start Freq. Stop 50.25 Hz 52.00 Hz F Recovery Response Time 50.15 Hz 0.00 sec Under Frequency Mode Gradient (%) Disable V 40 % Freq. Start 49.80 Hz F Recovery 49.80 Hz