

Delta RPI H5A 222 Max Short Circuit Current Declaration

V1.0 13/07/2022

Declaration:

Delta Electronics Australia hereby confirms that the Delta RPI H5A_222 has been tested and is shown capable of withstanding a maximum short circuit current of 20A per MPPT. No hardware or firmware change to the inverter is required to utilise to this declaration.

Inverter Model	Previous Max Isc PV (per MPPT)	New Max Isc PV (per MPPT)	
H5A_222	15A	20A	

Industry Predicament

On the 19 of May 2022, AS/NZS 5033:2021 came into effect for all new solar installations nationally. Among many changes, a key modification of this standard was the Isc calculation used to select appropriate power conversion equipment. This created an industry issue when pairing high current solar modules with a large portion of existing solar inverters.

Figure 1: H5A_222

AS5033:2021

- Clause 4.5.1.1 states "The current rating of the PV input of the PCE (Isc PV) shall be at least the current rating of the circuit they will be fitted to according to Clause 4.2.2"
- Clause 4.2.2 references Table 4.2 which references the calculation of I_{STRING MAX} in Clause 3.3.3.1(a): "*I_{string max}* = 1.25 x K_I x *I_{sc MOD}*"

This means, if you use a monofacial PV module (K_I =1) with an Isc of 12.5A you would need to multiply by 1.25x to attain the maximum string current. The Delta H5A_222 was listed at a conservative value of 15A per MPPT Isc meaning according to the new AS5033:2021, PV modules above 12A Isc would not be useable with our inverter.

Resolution

As per the SEC's "Solar PV Array Design Resolution" Delta can write a declaration that our H5A_222 has been tested and shown capable of withstanding the maximum short circuit current of 20A (from the previous 15A). Delta has performed an internal test as well as confirmed the ratings of internal components showing that an Isc of 20A is safe and the inverter has been designed to adequately withstand this current in the event of a short circuit.

This declaration can be referred to by installers to justify their design decisions for utilising higher current panels, whilst the I_{sc} is changed in the manual. This is declaration expands Delta's PV panel compatibility options.

Regards,

Name	Position	Signature
Geordie Zaphiris	Senior Field Application Engineer	4Zahn
Wester Ku	Design Engineering Associate Manager	Wester, Ku
David Leal	Country Manager	D. Leul.

Delta H5A 222 Short Circuit Current Test Report

- 1. Purpose: To verify the inverter H5A_222 will work normally after the reverse input short circuit current test of 20A.
- 2. Test Instruments:

DC source	:	IDRC DSP650-46WS
Oscilloscope	:	Lecroy HDO4034
Voltage probe	:	Cybertek DP6150A
Current probe	:	Cybertek CP8150A

- 3. Test Condition and site: Room Temperature / Delta R.D Lab
- 4. Setting of the DC Source: 350V / 20A
- 5. Test Procedure
 - a. Check and confirm the DUT inverter works normally.
 - b. Reverse the polarity of the PV input connection and allow the short circuit current of 20A to pass for 30mins.
 - c. Connect the PV input connection in the correct polarity and verify the DUT inverter works normally.

Test Result

a. Check and confirm the DUT inverter can work normally.									
Input 1		Input 2		Output 1					
Voltage Current Power	349.8 V 7.34 A 2576 W	Voltage Current Power	350.1 V 7.33 A 2577 W	Voltage 229.9 V Current 21.50 A					
				Power 4995 W					
CH1 : Input Voltage of PV1CH2 : Input Current of PV1CH3 : Input Voltage of PV2CH4 : Input Current of PV2									
70 A 60 A 50 A 40 X ²									
20 A 10 A -5 5 -4 5	-35 -2	s -1s	0	23 23 45	5 s				
50 A 40 X									
30 A 20 A 10 A -0 E -25 ms -20 ms	-15 ms -10	ms -5 ms	••••••••••••••••••••••••••••••••••••••	10 ma 15 ma 20 ma 25	5 ms				
Measure P1 value status C1 D1 C2 D1 C3 100 V 10.0 A 0.0 A	P2:mean(C1) P2:mean(C2) 351.04 V 7.565 A DC1M C4 D1 Z1 100 V/div 10.0 A 400.00 V 40.0 A	P3:mean(C3) P4:me 345:99 V 200m Z2 zoom Z3 zoom 100 V 500 x 500 A 100	an(C4) P5 7.546 A Z4 zoom. V 100 A +	P6 P7 P8 Tbase 0.00 s Trigger C1 Roll 1.0.00 s/div Stop	DC 2 V				

b. Reverse the polarity of the PV input connection and allow the short circuit current of 20A to pass for 30mins.

Delta Electronics (Australia) Pty Ltd ABN: 93 147 716 265 Unit 20-21, 45 Normanby Road, Notting Hill VIC 3168 Australia Tel: +61 3 9543 3720 Fax: +61 3 9544 0606 www.deltaelectronics.com.au

6. Conclusion:

Delta H5A_222 can withstand 20A short circuit current without any hazard or damage.

Delta Electronics (Australia) Pty Ltd ABN: 93 147 716 265 Unit 20-21, 45 Normanby Road, Notting Hill VIC 3168 Australia Tel: +61 3 9543 3720 Fax: +61 3 9544 0606 www.deltaelectronics.com.au