

Grid-tie Transformerless Hybrid Inverter

H5E_220

Operation and Installation Manual

Contents

1	Gana	eral Information						 	05
•	1.1	Scope of delivery							
	1.1	General Warnings / Notes on Safety							
	1.3	Validity		·		•		 •	00
	1.4	Product Description							
2		allation and Wiring		•	•		•	 •	00
_		Instruction before Installation	٠.	•		٠.	•		07
	2.1	Unpacking		•			•	 •	07
	2.2	Package Inspection							
	2.3								
_	2.4	Identification Label							
3									
	3.1	Dimensions							
	3.2	Function Introduction							
	3.2.1			٠			٠	 	11
4		allation and Wiring · · · · · · · · · · · · · · · · · · ·		•		• •	•	 ٠.	12
	4.1	Installation Location · · · · · · · · · · · · · · · · · · ·		٠			•	 •	12
	4.2	Mounting		٠				 	12
	4.3	Preparation before Wiring							
	4.4	AC Grid Connection : L + N + PE · · · · · · · · · · · · · · · · · ·							
	4.5	DC Connection · · · · · · · · · · · · · · · · · · ·							
	4.5.1								
	4.5.2								
	4.6	PE Connection · · · · · · · · · · · · · · · · · · ·							
	4.7	Digital Input							
	4.8	Function Port							
	4.8.1							 	23
	4.8.2							 	24
	4.8.3								
		3.1 RS-485 Connection · · · · · · · · · · · · · · · · · · ·							
	4.8.3.2	3.2 RS-485 Terminal Resistor · · · · · · · · · · · · · · · · · · ·						 	25
	4.8.4							 	25
	4.8.5							 	26
5	Main	n Parameters and Operation Modes						 	27
	5.1	Local Monitoring Mode						 	27
	5.2	Main Information · · · · · · · · · · · · · · · · · · ·							27
	5.3	Country Setting and Grid Protection Setting						 	28
	5.4	Active/Reactive Power Control · · · · · · · · · · · · · · · · · · ·						 	29
	5.4.1	P(U) control · · · · · · · · · · · · · · · · · · ·						 	29
	5.4.2							 	30
	5.5	Export Limit and Generation Limit						 	31
	5.6	Operation Mode						 	32
	5.6.1	•							
	5.6.2	•							
	5.6.3								
	5.6.4	· ·						 	35
	5.6.5	· · · · · · · · · · · · · · · · · · ·						 	36
	5.6.6								
	0.0.0	, otaliquiono modo e e e e e e e e e e e e e e e e e e		-	•		-	 •	01

	Turni 7.1 7.1.1 7.1.2 7.1.3 7.2 Maint Error De-Co	Forced charge in Balance mode . Battery Control Sem application ing the PV investant-up Proceed DC Voltage Che AC Utility Voltag Starting up the list Shutdown Proceed tenance Message and ommissioning inical Data	Setting	ff · · · · · · · · · · · · · · · · · ·	ing									38 39 42 42 42 43 43 44 45
F	igu	re												
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 1-1 ure 2-1 ure 2-2 ure 2-3 ure 3-1 ure 3-2 ure 3-3 ure 4-1 ure 4-2 ure 4-3 ure 4-5 ure 4-6 ure 4-7 ure 4-8 ure 4-9 ure 4-9 ure 4-1	: System diagran : Unpacking proc : Components : The identificatio : Dimensions : Inverter exterior : LED and Buttor : Attaching the m : Correct and inc : Adequate instal : Cable connectio : AC plug illustral : DC Wiring illust : BAT Wiring illust : PE Wiring : Digital input via 0 : Digital input of	on label or objects or objects or objects or ounting bra orrect installation gap ons or otion (PRC 3 ration or other objects).	icket Ilation i										07 08 09 10 11 13 13 14 15 17 19 20 21 21
	able	_												
Tab Tab Tab Tab Tab Tab	ble 2-2 : ble 3-1 : ble 4-1 : ble 4-2 : ble 4-3 : ble 9-1 :	Packing list Option part LED and Reset I Recommended I H4 connectors H4 connectors Error Message Fault Message Specifications	outton funct upstream pr	ion · · · · · · · · · · · · · · · · · · ·	on ·	· · · · · · · · · · · · · · · · · · ·	 	 	 	 	 	 	 	08 11 16 19 20 45

1 General Information

1.1 Scope of delivery

Congratulations on the purchase of your Delta H5E_220 grid-tied hybrid inverter. This manual will assist you in becoming familiar with this product. Please observe all safety regulations and take into account the connection requirements by your local grid utility.

1.2 General Warnings / Notes on Safety

Careful handling of the product will contribute to it's service life durability and reliability. Both are essential to ensure maximum yield from your product.

CAUTION!

During operation of electrical devices, certain parts are under dangerous voltage. Inappropriate handling can lead to physical injury and material damage. Always adhere to the installation regulations. Installation may only be conducted by certified electricians.

WARNING!

Repair work on the device should ONLY be carried out by the manufacturer. The inverter contains no user serviceable parts inside.

Please observe all points in the operation and installation manual. Isolate the device from the grid, the PV modules and the battery product before undertaking work on the device

DANGER!

To avoid risk of electrical shock, do not open the solar inverter. The inverter contains no user-serviceable parts. Opening the inverter will void the warranty. Dangerous voltage is present for 80 seconds after disconnecting all sources of

Remember that the unit has a high leakage current.

power, recommend 5 minutes for discharging.

The PE conductor MUST be connected prior to commencing operation.

WARNING!

The internal temperature may exceed over 70°C while operating. To avoid injury, do not touch the surface of the inverter whilst the unit is in operation.

ATTENTION

For operation and installation of inverter refer to the user manual. Failure to comply with the instructions in this manual may void the warranty.

1.3 Validity

This user manual describes the installation process, maintenance, technical data and safety instructions of H5E_220 under the DELTA brand.

1.4 Product Description

This device is a single-phase grid-tie hybrid inverter. It converts DC electricity from the PV array with the stored energy into single phase AC to supply power to the load and feed the excess generated power back to the local grid.

This inverter allows for a wide voltage input range and has a high performance efficiency and user friendly operation. In addition, the special DSP (Digital Signal Processor) design reduces the complexity of the circuit and electronic components. The features of H5E 220 and the extended hybrid system are shown below.

Features

- Power Rating: 5.5kVA (AU: 5kVA)
- Single-phase (L + N + PE), Grid-tie, transformerless solar inverter
- Maximum efficiency: >97.4%
- Europe efficiency: 96.8%
- Reactive power capability (Cap 0.8 Ind 0.8)
- Total harmonic distortion (THD < 3%) @ full load
- · Battery-ready PV Inverter
- · Built-in Consumption meter
- Synchronize standalone power function

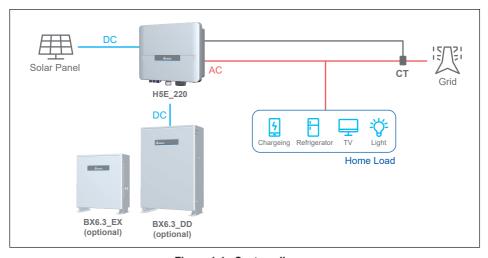


Figure 1-1: System diagram

2 Installation and Wiring

2.1 Instruction before Installation

Due to the variety of users and installation environments, you must read this manual thoroughly before installation. Installation of the unit and start-up procedures must be carried out by an accredited technician.

2.2 Unpacking

Unpacking process is shown as Figure 2-1.

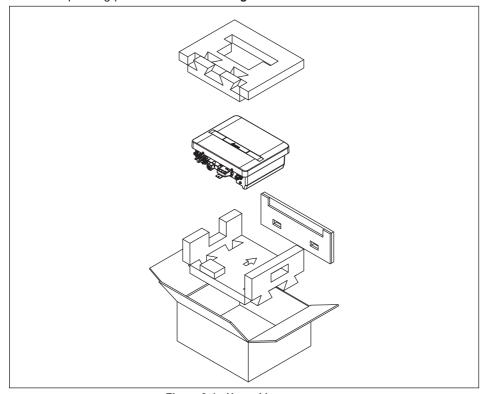


Figure 2-1: Unpacking process

Upon receiving your brand new RPI inverter, you will be required to remove it's protective packaging. This packaging consists of various materials that will need to be disposed of according to the specific recycling marking printed on them.

CAUTION!

If there is any visible damage to the inverter/accesories or any damage to the packaging, please contact your inverter supplier before installation.

2.3 Package Inspection

Please check for damage on the packaging upon receiving your inverter.

Please check the model number and the serial number on the packaging is identical with the model number and serial number on the unit itself.

Check if all the accessories are in the package as Table 2-1.

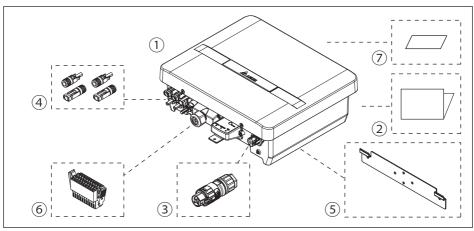


Figure 2-2: Components

Table 2-1 : Packing list

	H5E_220							
	Object	Qty	Description					
1	PV Inverter	1	Solar inverter					
2	Quick installation guide	1	Important safety instructions and technical specifications should be followed during installation.					
3	AC Plug	1	Connector for AC connection.					
4	DC Plug	2 pairs	H4 connector for DC connection.					
(5)	Wall-Mount Bracket	1	To mount the solar inverter securely on the wall.					
6	Multi function connector	1	Connector for DRM, RS485, VSG and battery communication function.					
7	Security Seal	4	Tamper stickers for Taiwan use only.					

Table 2-2 : Optional part

Optional part							
Model	Object	Exterior	Description				
PPM CT16_101	Current sensor		Current sensor for power meter function.				
PPM W2_210	10m current sensor cable	Ç.	Current sensor cable for				
PPM W2_230	30m current sensor cable		current sensor				

2.4 Identification Label

Users can identify the model name by the information on the product label. The model name, serial number and other specifications can be located on the product label. For label location, please refer to *Figure 2-3*.

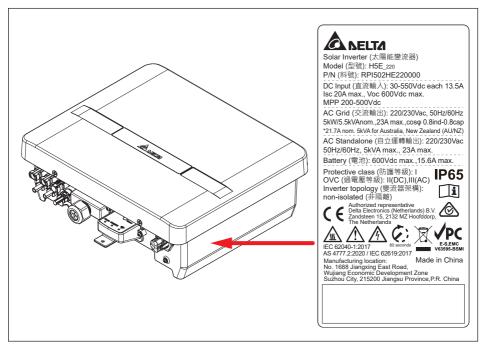


Figure 2-3: The identification label

3 Product Overview

3.1 Dimensions

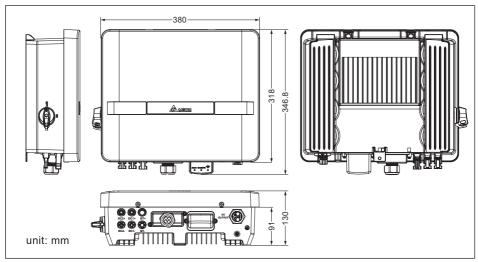


Figure 3-1: Dimensions

3.2 Function Introduction

The Inverter's exterior is shown in Figure 3-2.

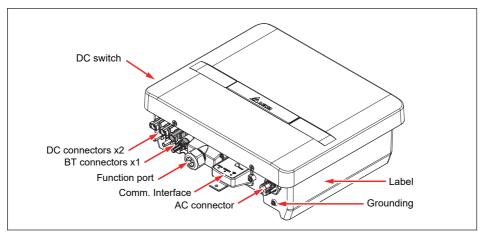


Figure 3-2: Inverter exterior objects

3.2.1 LED and Button

Figure 3-3: LED and Button

Table 3-1: LED and Reset button function

LED	Action	Status
Alarm	100ms On, 100ms Off	Insulation
Alailii	Steady on	Error or Fault. (see Chapter 9)
	100ms On, 100ms Off	Default Country Setting
Grid/	1s On, 1s Off	Countdown
SPS	2s flash(100ms), 2s on	The inverter is operating in standalone mode
	Steady on	On grid
	3s On, 3s Off	Connected to Wi-Fi router/DC1
	3s Flash(100ms), 3s Off	Connected to both WiFi router/DC1 and mobile device
	Off	Not connected
Wi-Fi	Steady on	Connected to mobile device
	100ms On, 100ms Off	Connected to mobile device and transferring data
	500ms On, 500ms Off	Reboot Wi-Fi (Press Button 3~10s)
	1s On, 1s Off	Reset password & Wi-Fi settings (Press Button 20~30s)

Reset button	Wi-Fi LED Status	Description
Push 3s~10s	Wi-Fi LED flashing once every half a second	Reset Wi-Fi module
Push 10s~20s	No flash	No function
Push 20s~	Wi-Fi LED flashing once every one seconds	Reset Wi-Fi module, and Wi-Fi password returns to the default: DELTASOL

4 Installation and Wiring

4.1 Installation Location

The inverter can be installed in indoors / outdoors.

WARNING!

Do not install the unit near or on flammable surfaces. Mount the unit tightly on a solid/smooth surface.

CAUTION!

The unit should not be installed in direct sunlight.

4.2 Mounting

This unit is designed to be wall-mounted. Please ensure the installation is perpendicular to the floor and the AC plug located at the base of the unit. Do not install the device on a slanting wall. The dimensions of the mounting bracket are shown in the figure below.

To mount the inverter on the wall, please follow the procedure below:

- 1.Screw the mounting bracket on the wall with 6 * Ф5.5mm Phillips head screws.
- 2. Attach the inverter to the mounting bracket.
- 3.Use Hex Wrench fixing the inverter with 1 * Φ5.0mm Hexagon Socket screw. Please refer to *Figure 4-1*.

CAUTION!

• The bracket supplied with the unit is specially designed and should be the only mounting device used for the unit.

- It is recommended to install the inverter in a suitable location which offers easy and safe access for service and maintenance.
- Please leave an appropriate gap in between units when installing multiple solar inverter systems (refer to *Figure 4-3*).
- Please install solar inverter at eye level to allow easy observation for operation and parameter setting.
- Ambient temperature for operation: -25°C~+60°C (power derating above 40°C).

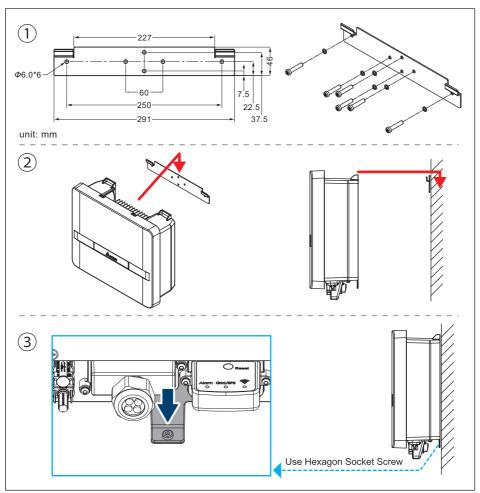


Figure 4-1 : Attaching the mounting bracket

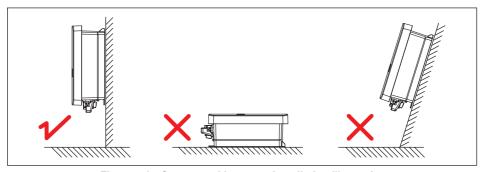


Figure 4-2: Correct and incorrect installation illustration

Please ensure the spacing requirement to allow for sufficient convective cooling. It is essential to ensure sufficient space for product operation as shown in *Figure 4-3*.

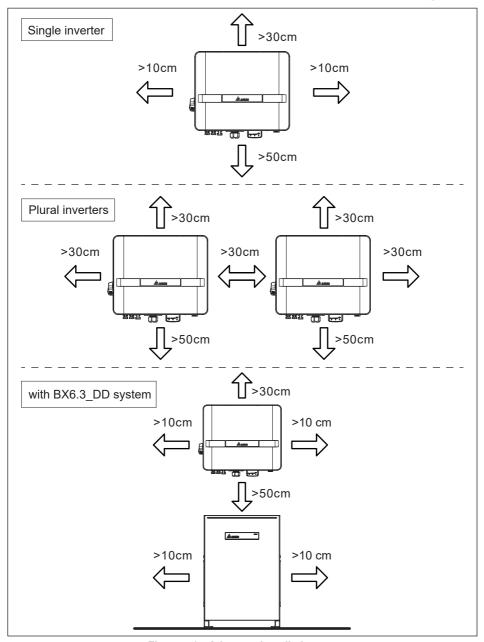


Figure 4-3: Adequate installation gap

4.3 Preparation before Wiring

- 1. Ensure voltage values and polarities are correct.
- 2. Ensure PV Switch is set to OFF, and BX6.3_DD system is shutdown.
- 3. When grounding the solar array positive or negative terminal, an isolation transformer is required due to the inverter has no galvanic isolation between the DC-input and AC-output.
- Please refer to Figure 4-4 for connections. Inverter can accept DC inputs in parallel.
- 5. According to IEC 62109-2, the PV modules need to have an IEC 61730 Class A rating.

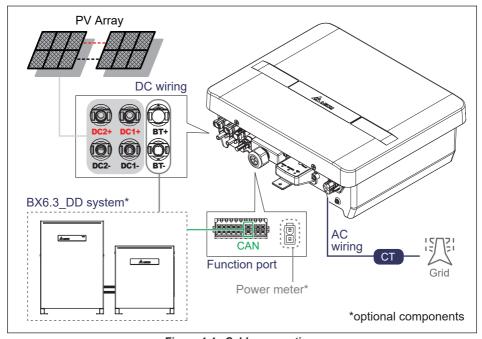


Figure 4-4: Cable connections

WARNING! SHOCK HAZARD

When the photovoltaic array is exposed to light, it supplies a DC voltage to the Inverter, a shock hazard may exist due to output wires or exposed terminals. To reduce the risk of shock during installation, cover the array with an opaque (dark) material and ensure that the Disconnect Device in the inverter is set to OFF before commencing any wiring.

4.4 AC Grid Connection: L + N + PE

WARNING!

Before commencing AC wiring, please ensure all AC circuit breakers are switched off.

Residual Current Monitoring Device

The inverter integrates Residual Current Monitoring Unit (RCMU) for the detection of residual current will disconnect immediately from the mains power once a fault current with a value exceeding the limit is detected.

However, if an external residual current device (RCD) (type A is recommended) is mandatory, the switch with rating 30 mA (recommended) should be used. RCD of other specifications can also be used according to local standard.

Power rating	Upstream AC circuit breaker
5 kVA	25A

Table 4-1: Recommended upstream protection

The AC plug provided with the inverter has the following technical characteristics:

Technica	al data					
Degree of protection						
Nominal current (observe derating*)						
 conductor cross 	6 mm²					
section:	4 mm²					
	2.5 mm ²					
2.5 mm ² with	1.5 mm² field plug					
Nominal voltage						
Rated surge voltage						
Pollution degree						
Operating temperature						
Material						

IP66**/ IP68 (2 m	, 24 h)**/ IP69K***						
IEC 61984	IEC 61535	2 PfG 1915 @ 85 °C					
35 A	32 A	21,4 A					
32 A	25 A	17.3 A					
24 A	20 A	14,1 A					
17,5 A	17,5 A	12,2 A					
IEC 61984	IEC 61535	2 PfG 1915	UL 2238				
690 V	500 V	500 V	600 V				
6 kV							
3							
-40 °C +110 °C -40 °C +110 °C-40 °C +110 °C-40 °C +105 °C							
PPE							

^{*} Operating current [A] depending on ambient temperature [°C], according to conductor cross-section.

^{**} TÜV Rheinland approved / *** Phoenix Contact approved

Read and follow the instructions delivered with the AC plug.

The AC plug delivered with the inverter can be used with flexible or rigid copper cable.

When calculating the cross section of the cable, consider:

- material used
- thermal conditions
- cable length
- type of installation
- AC voltage drop
- power losses in cable

Always follow the system installation requirements defined for your country!

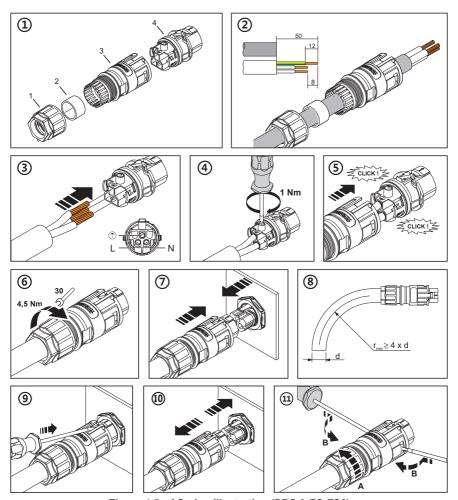


Figure 4-5 : AC plug illustration (PRC 3-FC-FS6)

4.5 DC Connection

WARNING!

- When undertaking DC wiring, please ensure the correct polarities are connected.
- When undertaking DC wiring, please ensure that the DC isolator switch on the PV array is OFF.
- When undertaking BAT wiring, please ensure that the BX6.3 DD system is shutdown.

CAUTION!

The maximum open circuit voltage of the PV Array must not exceed 600Vdc.

NOTE

The isolator installed between the PV Array and inverter must meet the rating of voltage higher than this device's maximum input voltage.

4.5.1 PV connector

The inverter operate using two separate MPP trackers that can handle both symmetrical and asymmetrical loads to allow for optimum adjustment.

This allows for the requirements of complex PV system designs to be fulfilled.

MPP range with Max. power	H5E_220
Symmetrical load	220~500V
Asymmetrical load	440~500V
Max. ratio for asymmetrical load	100/0% ; 0/100%

The RPI range of PV inverters uses genuine Amphenol H4 connectors.

DC plugs and DC cables

The DC plugs for all DC connections are provided along with the inverter.

If you want to order more or need a different size, see information in the following table.

Description	Specifications					
contact size	2.5mm² / 14AWG	4mm² / 12AWG	6mm² / 10AWG			
rated current (TUV)	25A @85°C	35A @85°C	45A @85°C			

Table 4-2: H4 connectors

DC wiring polarities have two components, Plus and Minus, which are shown in *Figure 4-6.* The connection shall conform to the indication marked on inverter.

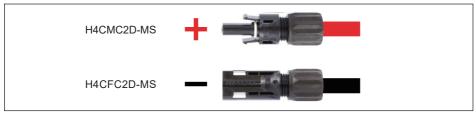


Figure 4-6: DC Wiring illustration

4.5.2 Battery connector

H5E_220 is currently compatible with the BX6.3_DD / BX12.6_DD battery system as backup power.

BAT plugs and BAT cables

The battery plugs are provided along with the package of battery system.

If you want to order more or need a different size, see information in the following table.

Description	Specifications		
contact size	2.5mm² / 14AWG	4mm² / 12AWG	6mm² / 10AWG
rated current (TUV)	25A @85°C	35A @85°C	45A @85°C

Table 4-3: H4 connectors

BAT wiring polarities have two components, Plus and Minus, which are shown in *Figure 4-7.* The connection shall conform to the indication marked on inverter.

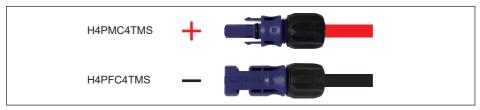


Figure 4-7: BAT Wiring illustration

4.6 PE Connection

To ground the inverter, please ensure the PE conductor to the grounding point. Recommended specifications : 4mm^2 - 6mm^2

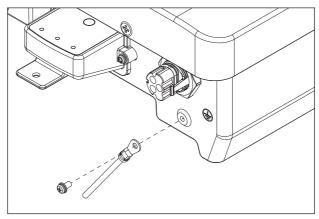


Figure 4-8 : PE Wiring

4.7 Digital Input

To implementation of power management, the digital input interface receives the specifications of the network operator via a ripple control receiver or a DRED. H5E 220 can access these command via DC1 100.

Germany:

The active power limitation in the stages 0%, 30%, 60% and 100%

· Italy:

Power output of Max. 6KW for PV plant installation.

Remote shutdown: Narrow Frequency limits between 49.5 Hz to 50.5 Hz.

Australia and New Zealand:

The inverter support the demand response mode (DRMs).

- DRM 0 Operate the disconnection device.
- DRM 1 Do not consume power
- DRM 2 Do not consume at more than 50% of rated power
- DRM 3 Do not consume at more than 75% of rated power and source reactive power
- DRM 4 Increase power consumption (subject to constraints from other active DRMs)
- DRM 5 Do not generate power.
- DRM 6 Do not generate at more than 50% of rated power.
- DRM 7 Do not generate at more than 75% of rated power and sink reactive power.
- DRM 8 Increase power generation. (subject to constraints from other active DRMs)

Customer:

User defined.

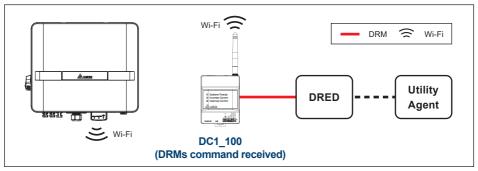


Figure 4-9 : Digital input via DC1_100

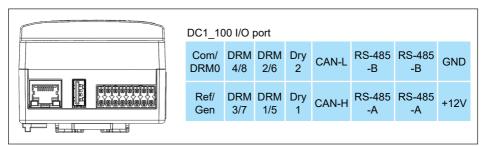
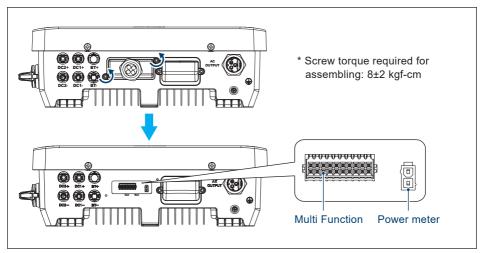
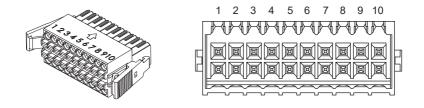
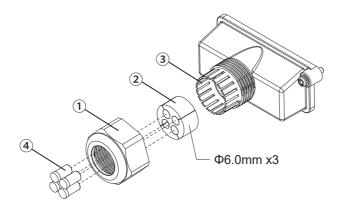


Figure 4-10: Digital input on DC1_100

4.8 Function Port


Figure 4-11: Function port

1	2	3	4	5	6	7	8	9	10
CAN-H (VSG)	GPIO-IN (VSG)	RS485+	RS485+	16V3	RS485 TERM.	CAN-H (DD)	DRM1/5	DRM3/7	REF GEN/0
CAN-L (VSG)	GPIO-OUT (VSG)	RS485-	RS485-	GND	RS485 TERM.	CAN-L (DD)	DRM2/6	DRM4/8	COM LOAD/0

- Conductor cross-section: 0.205 mm² (AWG24) ~ 0.081 mm² (AWG28)
- Conductor cross-section: 0.326 mm² (AWG22) ~ 0.205 mm² (AWG24) for 16V3 & GND
- Outside diameter of cable: 3.8mm ~ 5.2mm
- Stripping Length: 7mm ~ 8mm
- Please refer to UL 2464 computer cable guideline

4.8.1 Installation of the Rubber Washer

- (1) Loosen the front cover ① counterclockwise.
- (2) Remove the rubber washer ② from the fastening ring ③.
- (3) Remove the washer plugs ④ and insert the cable from the cut out of rubber washer ②.
- (4) Connect the cable with the terminal.
- (5) Install the rubber washer ② to the fastening ring ③.
- (6) Surely tighten the front cover \bigcirc .
- * To ensure contactment, please make sure cables are not twisted.

4.8.2 Digital Input

To implementation of power management, the digital input interface receives the specifications of the network operator via a ripple control receiver.

Australia and New Zealand:

The inverter support the demand response mode (DRMs).

DRM 0 - Operate the disconnection device.

DRM 1 - Do not consume power

DRM 2 - Do not consume at more than 50% of rated power

DRM 3 - Do not consume at more than 75% of rated power and source reactive power

DRM 4 - Increase power consumption (subject to constraints from other active DRMs)

DRM 5 - Do not generate power.

DRM 6 - Do not generate at more than 50% of rated power.

DRM 7 - Do not generate at more than 75% of rated power and sink reactive power.

DRM 8 - Increase power generation. (subject to constraints from other active DRMs)

· Customer: User defined.

The inverter can detect the state of the relay of the ripple control receiver. The information which relay shall be controlled parameter by the network operator.

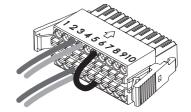
Asserted by	shorting pins	Inverter behavior (AU)		
REF GEN/0	COM LOAD/0	DRM 0 - Disconnect from grid	Charge/Discharge mode	
DRM1/5	COM LOAD/0	DRM 1 - Do not consume power		
DRM2/6	COM LOAD/0	DRM 2 - Do not consume at more than 50% of rated power	Charge mode	
DRM3/7	COM LOAD/0	DRM 3 - Do not consume at more than 75% of rated power	Charge mode	
DRM4/8	COM LOAD/0	DRM 4 - Increase power consumption		
DRM1/5	REF GEN/0	DRM 5 - Do not generate power		
DRM2/6	REF GEN/0	DRM 6 - Do not generate at more than 50% of rated power	- Discharge mode	
DRM3/7	REF GEN/0	DRM 7 - Do not generate at more than 75% of rated power		
DRM4/8	REF GEN/0	DRM 8 - Increase power generation		

- Conductor cross-section: 0.205 mm² (AWG24) ~ 0.081 mm². (AWG28)
- Outside diameter of cable: 3.8mm ~ 5.2mm
- Please refer to UL 2464 computer cable guideline

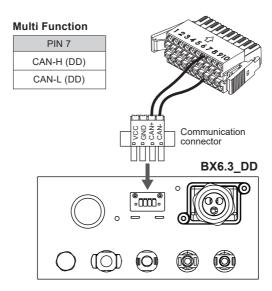
4.8.3 Communication Connections

4.8.3.1 RS-485 Connection

The pin data format of RS-485 is shown below:

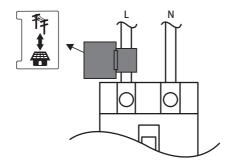

Baud rate	Data bits	Stop bit	Parity
19200	8	1	N/A

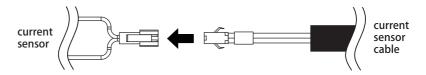
4.8.3.2 RS-485 Terminal Resistor


Add the termination resistor (short the RS485 TERM.) if this is the last device in the RS485 chain

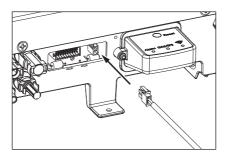
Multi Function

PIN 3	PIN 4	PIN 6
RS485+	RS485+	RS485 term.
RS485-	RS485-	RS485 term.


4.8.4 CAN(DD) Connection (optional)


4.8.5 Power meter (optional)

Connecting the current sensor in the following steps


- (1) Attach a current sensor to the L cables of the main earth leakage circuit breaker.
- (2) Clamp current sensor on power line and make sure that the direction is correct

(3) Connect the current sensor cable to the current sensor connection terminal of the measurement unit.

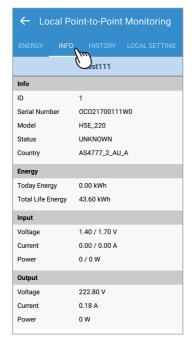
(4) Connect the current sensor cable to the CT sensor connection terminal on the function port.

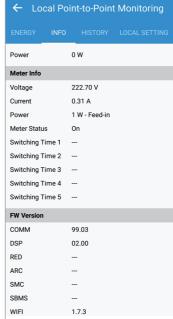
5 Main Parameters and Operation Modes

5.1 Local Monitoring Mode

To monitor and change the parameters setting of the inverter, please access to the "DeltaSolar" App and select "Local Monitoring."

For more details about the App, please refer to the QR code or the following link for installation and operation manual.





https://mydeltasolar.deltaww.com/index.php?p=manual

5.2 Main Information

After select "Local Monitoring" and connect to the inverter, please select "INFO" sheet on the top row. The information including Serial Number, Model Name, FW version and etc. can be found in this page.

5.3 Country Setting and Grid Protection Setting

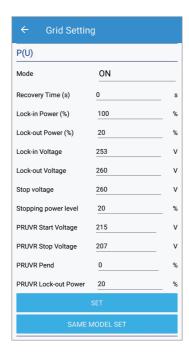
ATTENTION

The parameters are set according to the requirements of the selected country. A change to the parameter settings may result in the approval being lost.

To check the country setting and grid protection setting, please access to "Local Setting" on the top row, select "Grid/VSG/ATS Setting" and "Grid Setting". Please contact Delta local service for the access code to change the parameters in this page.

5.4 Active/Reactive Power Control

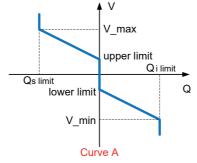
ATTENTION

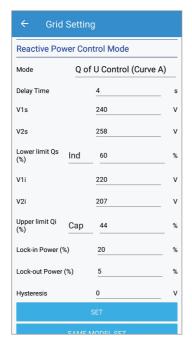

The parameters are set according to the requirements of the selected country. A change to the parameter settings may result in the approval being lost.

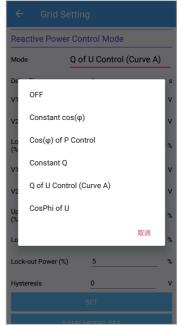
5.4.1 P(U) Control

According to AS/NZS 4777.2:2020:

The volt—watt response mode varies the output power of the inverter in response to the voltage at its terminal. The inverter should have the volt—watt response mode. This mode is enabled by default.

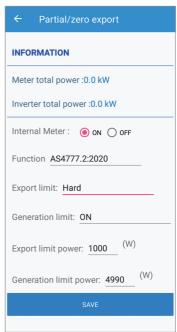

The setting of this function can be found in the "Grid Setting" page, please refer to previous sub-chapter for the instruction to access to this page.


5.4.2 Q(U) Control


Q(U) is a control mode that inverter will provide reactive power according to grid

voltage.

The setting of this function can be found in the "Grid Setting" page, please refer to previous sub-chapter for the .instruction to access to this page.

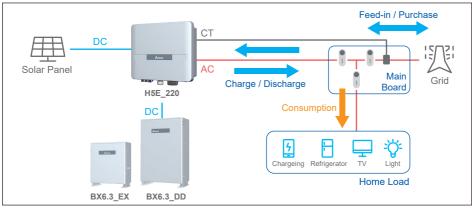


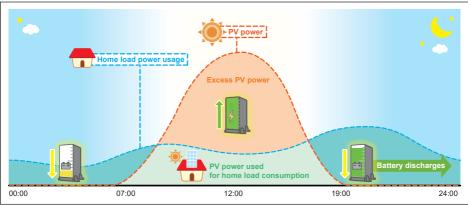
5.5 Export Limit and Generation Limit

As per AS4777.2:2020, there are two generation control functions required, including generation limit control and export limit control.

To change the setting of both control, please access to the "local setting" page, select "function setting" and select "Export / Generation Limit".

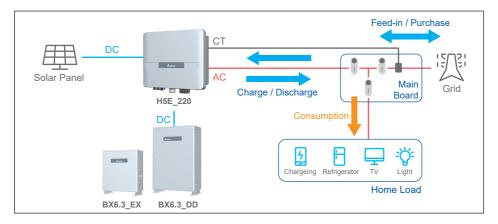
5.6 Operation Mode

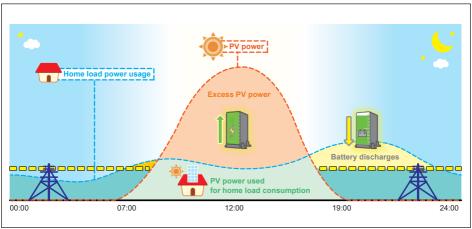

The H5E hybrid system has 6 operation modes for users to choose and 2 passive operation modes. Each mode has different behavior between battery, grid, and home load. In some area, the detail behavior of each operation mode may be different due to the local electricity regulations.


5.6.1 Self-consumption mode

In this mode, the system is operated in following priority:

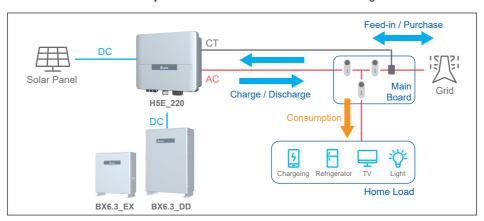
- Charge the battery with the excess PV energy which feed-in to the grid until the battery is fully charged.
- 2. Discharge the battery when the PV energy is insufficient to provide the home load consumption until the battery is fully discharged.

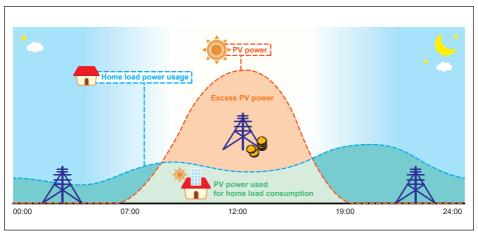

When there is no PV power, battery starts to discharge and supply home load until it's empty. If the time setting function is enabled, the behavior of the system will according to the time setting in priority. The detail operation of battery control setting is described in *Chapter 5.7*.



5.6.2 Peak cut mode

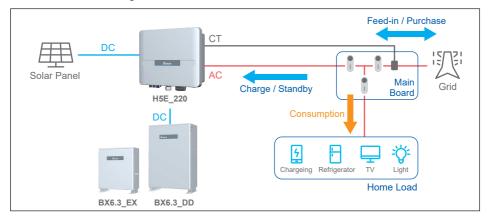
In this mode, the home load will consume the power from the PV inverter in priority. When the home load consume more power than the power generated by the inverter, it will consume the power from the grid. Then, battery will only discharged to the supply the extra load after the power consume from the grid exceeds the "peak cut power" setting value. "Peak cut power" can be assigned in the Battery Control page.

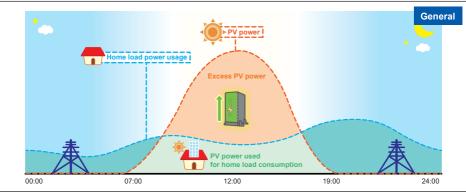


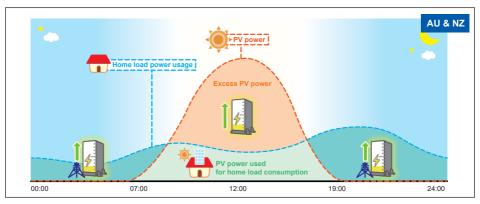

5.6.3 Selling first mode

Selling first mode is a standard mode combining with 6 time settings. In this mode, the system is operated in following priority:

- If users have set the time settings, inverter will change behavior in these time intervals
- 2. Discharge the battery when purchased power from grid is detected until battery empty.

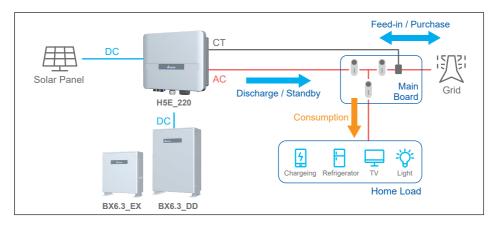

Please refer to *Chapter 5.7* for more detail about time settings.

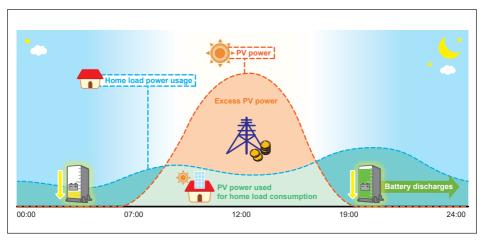




5.6.4 Charge first mode

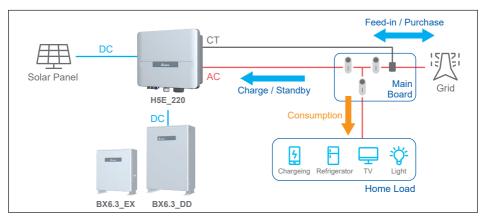
In this mode, battery will be charged by PV or grid in priority, after battery is fully charged, the remaining PV power then feed-in to home load and grid. Battery will not be discharged in this mode even there is demand in the home load.

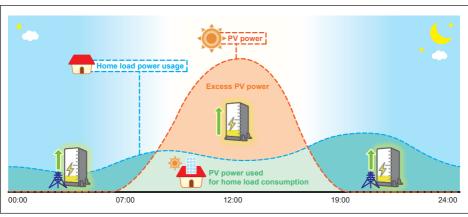




5.6.5 Discharge first mode

In this mode, the battery will only be discharged depends on the load consumption. It will not be charged even there is excess PV power. All the PV power is feed-in to home load and grid. Battery will keep discharging when there is demand in the home load until it fully discharged.


5.6.6 Standalone mode


Operation mode select 'Hybrid with backup charge - phase 2', the system changes to standalone mode automatically during a power outage occur. At this time, grid side is disconnected and hybrid inverter operate in micro-grid to provide simulated grid for home load and PV inverter. The detail configure application is described in *Chapter 6*.

5.6.7 Forced charge mode

Forced charge mode is passive mode. Although battery stops any action when SOC (State Of Charge) reach 0%, the self-discharge phenomenon may still causing SOC lower than 0%.

At this time, hybrid inverter will force battery charging from PV power and grid power until the battery SOC reaching SOC limit setting (default is 30%).

5.6.8 Balance mode

This operation is passive mode and only applied to H5E_220+BX6.3_DD+BX6.3_EX system. During the installation, the battery voltage of BX6.3 series might be different. Due to the specifications of the battery module, the system will be switched to this mode automatically to balance the voltage of BX6.3 series.

When the system is operating under this mode, the system will either discharge the battery with 3 kW power to the load and the grid or charge the battery with 2.5 kW power from the grid.

Once the battery voltage of BX6.3 series are balance, this balance mode will stop and the system will automatically be switched to the operational mode selected by the user.

5.7 Battery Control Setting

In battery control setting page, you can assign SOC limit, peak cut power, and BT charge / discharge time interval.

· SOC Limit

You can assign the lower limit of battery SOC. Battery will stop discharging when its SOC reach this limit.

· Peak Cut Power

Peak cut power is used in peak cut mode. You can assign the peak power of home load usage from grid. When the home load consumption exceeds this value, battery will discharge to supply remaining power.

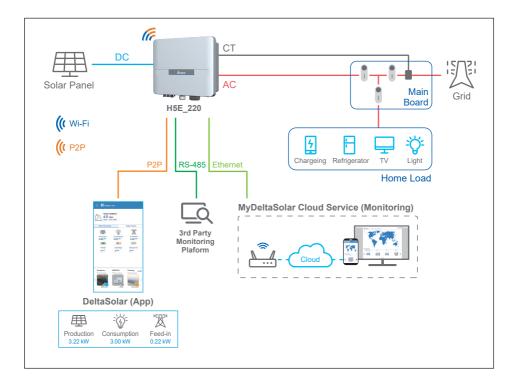
· Charge / Discharge Schedule

This settings can be separated into BT charge time and BT discharge time. Each setting has 3 time setting intervals. The time setting of all the intervals cannot overlap with each other.

The function is only available under self-consumption mode and selling first mode. Under either mode, Hybrid inverter will automatically switched to charge first / discharge first mode according to the charge/discharge schedule and switched back to the original mode when the time is out of the setting interval.

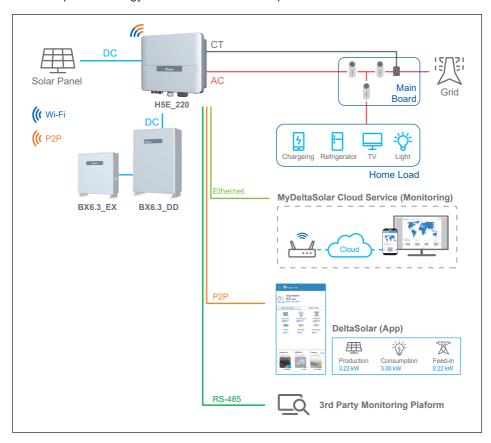
· Main Supply Breaker Capacity

Please set the current rating of the main supply breaker of the household. The system will refer to this setting to adjust its maximum charging power drawn from the grid during peak hours to avoid the unnecessary tripping of the breaker.


· Time Schedule for SOH-cycle

Once a year the battery must do a FULL un-interrupted discharge and re-charge cycle. This will be completed and undertaken at a scheduled day and time as set by the user. Should the temperature of the battery be below 20 degrees Celsius the battery will postpone the process for 3 months.

6 System application


1. PV only

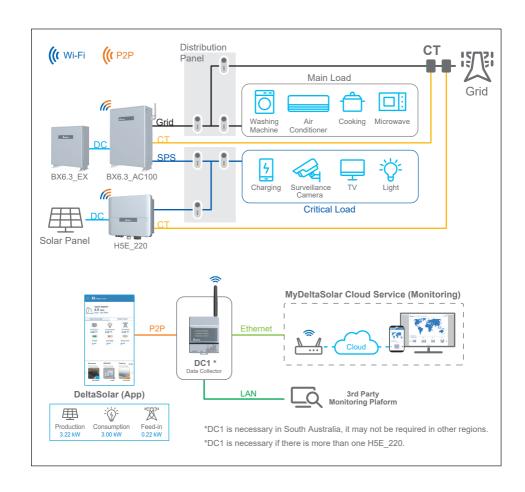
The Delta hybrid inverter can be used purely as an inverter without a battery connected to it.

2. Hybrid

To optimise self-consumption in your PV system, you can use a battery as a storage system. In this system, the inverter can store the excess PV energy and provide energy to the load when the PV power is insufficient.

DANGER!

In general, you mustn't use the described system in backup power mode for life-support-systems or any other medical devices and systems. Backup power mode doesn't comply to the requirements for emergency power and isn't an uninterruptible power supply.


ATTENTION

Short circuit at the critical load may cause damage to the inverter in Hybrid with backup charge – phase 1

3. Hybrid with backup charge - phase 1

The key feature of this system is that it can support off-grid application and the PV inverter can continue generating power during power failure. In this application, the auto contactor is not necessary as it applies the internal contactor of BX6.3_AC100. Due to hardware limitation, this system can only provide maximum power of 5 kVA to the main load and the critical load must be operate below 5 kVA.

7 Turning the PV inverter on/off

WARNING!

The internal temperature may exceed over 70°C while operating. To avoid injury, do not touch the surface of the inverter whilst the unit is in operation.

After installation, please ensure the AC, the DC and communication connection are correct. When enough power is generated from the PV array, the device will operate automatically and will initial 'self-test'. This self-test takes approximately 2 minutes and will occur at first start-up of the day.

DANGER!

When undertaking Battery wiring, please ensure that the BX6.3_DD system is shutdown.

7.1 Start-up Procedures

7.1.1 DC Voltage Checking

Firstly, uncover the PV arrays and expose them to full sunlight. Please note, the sunlight must be intense enough to produce the required output voltage for the inverter to start up.

Measure the PV array open circuit DC voltage across the DC positive (+) and negative (-) terminals.

7.1.2 AC Utility Voltage Checking

Using an AC voltmeter, measure the AC open circuit utility voltage between L1 (L) and L2 (N) Ensure the voltage is at approximately the nominal value. The inverter operates with a line-to-line voltage range around the nominal value.

Refer to *Chapter 11* output section for the utility voltage operating range for the inverter model.

7.1.3 Starting up the Inverter

ATTENTION

Due to the variety of installation environments, installation of the unit and start-up procedures must be carried out by an accredited technician. Incorrect settings may cause the inverter to malfunction.

- 1.Switch on the PV Array switch and DC switch (with DC switch model) to connect PV Array.
- 2. Switch on AC circuit breaker to connect electricity grid.
- 3. Commission the inverter with the "DeltaSolar" App, please refer to the operation guide for more information.

For compliance to AS/NZS 4777.2:2020, please select the country grid code from Australia Region A, B, C or New Zealand. Please contact your local grid operator for which region to select."

Wi-Fi communication

Please refer to the following website or scan the QR-code for Wi-Fi connection and APP operation guide.

ATTENTION

To establish a successful communication between Inverter Wi-Fi to MyDeltaSolar Cloud, in the Wi-Fi connection setup page, the signal strength must be above -70dBm between each Wi-Fi device (Wi-Fi router, inverter, DC1...etc.). In case the signal strength is below -70dbm, it may cause certain communication errors which may prevent a successful Wi-Fi communication. To avoid such issues, please adjust the Wi-Fi device position to improve the signal strength/quality.

RS-485 connection

Please contact the customer service center for the detail.

7.2 Shutdown Procedures

- 1. Turn off the "Main Switch (Inverter Supply)" or AC isolator.
- 2. Turn off "PV Array DC isolator" located at the inverter.
- 3. Push EPO button and check the BX6.3 DD system is shutdown.

WARNING!

Do not open plug and socket connectors under load. PV array DC isolators do not de-energize the PV array and array cabling.

8 Maintenance

In order to ensure normal operation of the inverter, please check the unit regularly. Check that all terminals, screws and cables are connected and appear as they did upon installation. If there are any impaired or loose parts, please contact your solar installer immediately. Ensure that there are no foreign objects in the path of the heat outlet and keep the unit and it's surroundings clean and tidy at all times.

WARNING!

Before any maintenance, please switch AC and DC power off to avoid risk of electronic shock.

9 Error Message and Trouble Shooting

Error			
Message	Possible cause	Action	
E01: OFR	Actual utility frequency is higher than the OFR setting Incorrect country setting Detection circuit malfunction	Check the utility frequency on the inverter terminal Check country setting Check the detection circuit inside the inverter	
E02: UFR	Actual utility frequency is lower than the UFR setting Incorrect country or Grid setting Detection circuit malfunction	Check the utility frequency on the inverter terminal Check country & Grid setting Check the detection circuit inside the inverter	
E09: No Grid	AC breaker is OFF AC plug disconnected Internal fuses are broken	Switch on AC breaker Check the connection in AC plug and make sure it connects to inverter Replace fuses and check all switching devices in boost & inverter stages	
E10: UVR	Actual utility voltage is higher the UVR setting Incorrect country or Grid setting Detection circuit malfunction	Measure the utility AC voltage to the inverter terminal. Check country & Grid setting Check the detection circuit inside the inverter	
E11: OVR	Actual utility voltage is higher than the OVR setting Incorrect country or Grid setting Detection circuit malfunction	Measure the utility AC voltage to the inverter terminal. Check country & Grid setting Check the detection circuit inside the inverter	
E13: OVR-Slow	Actual utility voltage is over than the OVR setting Incorrect country or Grid setting Detection circuit malfunction	Check the utility voltage on the inverter terminal Check country & Grid setting Check the detection circuit inside the inverter	
E26: OFR-Slow 1. Actual utility frequency is over the OFR setting 2. Incorrect country or grid setting 3. Detection circuit malfunction		Check the utility frequency on the inverter terminal Check country setting Check the detection circuit inside the inverter	
E27: UFR-Slow 1. Actual utility frequency is under the UFR setting 2. Incorrect country or Grid setting 3. Detection circuit malfunction		Check the utility frequency on the inverter terminal Check country & Grid setting Check the detection circuit inside the inverter	

Error			
Message Possible cause		Action	
E28: UVR-Slow	Actual utility voltage is under the UVR setting Incorrect country or Grid setting Detection circuit malfunction	Check the utility voltage on the inverter terminal Check country & Grid setting Check the detection circuit inside the inverter	
E30: OVR(PV)	Actual Solar voltage is over 560Vdc Detection circuit malfunction	Modify the solar array configuration and make the Voc less than 550Vdc Check the detection circuit inside the inverter	
E34: Insulation	PV array insulation fault Large PV array capacitance between Plus to Ground or Minus to Ground or both. Detection circuit malfunction	Check the insulation of Solar inputs Check the capacitance, dry PV panel if necessary Check the detection circuit inside the inverter	

Table 9-1 : Error Message

Fault			
Message Possible cause		Action	
F01: DC Injection	Utility waveform is abnormal Detection circuit malfunction	Check the utility waveform. Grid connection of inverter need to be far away from non-linear load if necessary Check the detection circuit inside the inverter	
F05: NTC OTP 1. The ambient temp. is over 60°C 2. Detection circuit malfunction		Check the installation ambient temperature and environment Check the detection circuit inside the inverter	
F06: NTC0 Circuit Fail	Ambient temp. >100°C or <-40°C Detection circuit malfunction	Check the installation ambient temperature and environment Check the detection circuit inside the inverter	
F07: NTC LTP	Ambient temp. <-30°C Detection circuit malfunction	Check the installation ambient temperature and environment Check the detection circuit inside the inverter	
F09: Ntc2 Circuit Fail	Ambient temp. >100°C or <-40°C Detection circuit malfunction	Check the installation ambient temperature and environment Check the detection circuit inside the inverter	

Fault			
Message	Possible cause	Action	
F15: HW ADC1 1. Auxiliary power circuitry malfunction 2. Detection circuit malfunction		Check the auxiliary circuitry inside the inverter Check the detection circuit inside the inverter	
F16: HW ADC2	Auxiliary power circuitry malfunction Detection circuit malfunction	Check the auxiliary circuitry inside the inverter Check the detection circuit inside the inverter	
F17: HW ADC3 1. Auxiliary power circuitry malfunction 2. Detection circuit malfunction		Check the auxiliary circuitry inside the inverter Check the detection circuit inside the inverter	
F19: HW ADC5 1. Auxiliary power circuitry malfunction 2. Detection circuit malfunction		Check the auxiliary circuitry inside the inverter Check the detection circuit inside the inverter	
F20: Efficiency Abnormal	The calibration is incorrect Current feedback circuit is defective	Check the accuracy of current and power Check the current feedback circuit inside the inverter	
F23: Comm. Fault (Dis.) 1. DSP is idling 2. The communication conner disconnected 3. The communication circu		Check reset and crystal in DSP Check the connection between DSP and COMM Check the communication circuit	
F24: RCMU Over Rating	PV array insulation fault Large PV array capacitance between Plus to Ground or Minus to Ground Either side of boost driver or boost choke malfunction Detection circuit malfunction	1. Check the insulation of Solar inputs 2. Check the capacitance (+ <-> GND & - <-> GND), must < 2.5uF. Install an external transformer if necessary 3. Check boost driver & boost choke 4. Check the detection circuit inside the inverter	
F27: 1. RCMU is disconnected the RCMU Circuit Fail 2. Detection circuit malfunction 2. Ch		Check the RCMU connection inside the inverter Check the detection circuit inside the inverter	
F28: Relay Test Short 1. One or more relays are sticking 2. The driver circuit for the relay malfunction		Replace the defective relay(s) Check the driver circuit inside the inverter	
F29: Relay Test Open	One or more relays are abnormal The driver circuit for the relay malfunction The detection accuracy is not correct for Vgrid and Vout	Replace the defective relay(s) Check the driver circuit inside the inverter Check the Vgrid and Vout voltage detection accuracy	

Fault			
Message	Possible cause	Action	
F35: HW Bus OVR	1. Driver for boost is defective 2. Voc of PV array is over 560Vdc 3. Surge occurs during operation 4. Detection circuit malfunction	Check the driver circuit for boost inside the inverter Modify the solar array setting, and make the Voc less than 550Vdc N/A Check the detection circuit inside the inverter	
F37: OOCP	Detection circuit malfunction Check the detection circuinverter		
F42: CT sensor Fail (A) 1. Inverter choke Fail 2. Output Filter Fail 3. Detection circuit malfunction		Check Inverter choke inductance. Check output filter capacitance. Check the detection circuit inside the inverter	
F56: HW incompat.	HW power rating incorrect	Check comm. HW power rating info.	
F60: IOCP(PV1)	Switching device in boost is defective Driver for boost is defective Input current detection circuit malfunction	Check all switching device in boost Check the driver circuit for boost inside the inverter Check input current detection circuit	
F61: IOCP(PV2) 1. Switching device in boost is defective 2. Driver for boost is defective 3. Input current detection circuit malfunction		Check all switching device in boost Check the driver circuit for boost inside the inverter Check input current detection circuit	
F77: External CT Fail	Enable the CT function, but not optional the current sensor. Wrong connection at current sensor	Disable the CT function and log in to the DeltaSolar APP. Choose Local Setting > Function Setting > Export / Generation Limit > Internal meter turn OFF Make sure the configuration (see Chapter 4.8.5)	

Table 9-2 : Fault Message

10 De-Commissioning

De-Commissioning Procedure:

If necessary to put the device out of operation for maintenance and/or storage, please follow the instructions below.

WARNING!

To avoid injuries, please follow this procedures

- 1. Switch off AC circuit breaker to disconnect from electricity grid.
- 2. Switch off the PV Array switch to disconnect from PV Array.

- 3. Push EPO button and check the Bx6.3DD system is shutdown.
- Use proper voltage meter to confirm that the AC and DC power are disconnected from the unit.
- 5. Remove the AC wiring immediately to completely disconnect from electricity grid.
- 6. Remove the DC wiring to disconnect from PV Array.
- 7. After completing all of the above steps, the inverter can be removed.

11 Technical Data

Table 11-1: Specifications

Model	H5E_220			
	GENERAL			
Enclosure	Powder-coated aluminium			
Operating temperature	-25~60°C, full power up to 40°C			
Operating Altitude	< 2000m			
Relative humidity	0% – 95% non-condensing.			
Environmental category	Outdoor, wet locations			
Inverter topology	Non-isolated (TL Topology)			
Safety class	Class I metal enclosure with protective earth			
Pollution degree	Internal: II, External: III			
Overvoltage category	AC output: III, DC input: II			
Flicker impedance	$Z = 0.4 + j 0.25 \Omega$ (total impedance)			
Three-phase combinations	No ¹			
	DC INPUT (Solar side)			
Max. input voltage	600 Vdc			
Operating voltage range	30-550Vdc			
MPP range (rated power)	200-500Vdc			
Normal voltage	350 Vdc			
MPP tracker	2			
Maximum input current	13.5 Adc for each / 27 Adc for total			
Maximum input power	6200 W			
Max. short circuit current	20 A per MPPT			
Max. inverter backfeed current to the array	0A			
Startup voltage	35 Vdc			
Input connection	H4, 2 pairs			

¹⁾ Testing to multiple inverter combinations as per AS/NZS 4777.2:2020 Section 5 has not been conducted

DC Switch parameters (Solar side)			
Insulation voltage (Ui)	1200 V		
Rated impulse withstand voltage(Uimp)	8 kV		
Suitability for isolation	Isolating device		
Rated operational current	600V/30A		
PV utilization category	DC-PV2		
Rated thermal current uninterrupted duty (lu)	50 A		
Rated short-time withstand current (1s) (lcw)	700 A		
Rated short-circuit making capacity (lcm)	1 kA		
Rated conditional short-circuit current (lsc)	5 kA		
	DC INPUT (BAT side)		
Max. voltage	600 Vdc		
Compatible brand	DELTA		
Compatible battery box	BX6.3_DD		
	Stand-alone mode ²		
Maximum power ³	5000 VA		
Max. output current 23 A			
	AC INPUT/OUTPUT (Grid side)		
Nominal output power ⁴	5500 VA		
Maximum power	5500 VA		
Voltage	220/230 Vac -20%~+22%		
Nominal output current	22 A ⁵		
Max. output current	23 A		
Maximum output fault current	25 A		
Maximum output over current protection	25 A		
Current (inrush) (A, peak and duration)	30A peak, 1ms		
Frequency	50/60 Hz		
Total harmonic distortion ⁶	<3% @Rated power		
Power factor ⁶	>0.99 @Rated power		
Peak efficiency	97.5%		
EU efficiency	96.8%		
Output connection	IP 67 single-phase		

AC OUTPUT (Grid side)				
Active anti-islanding method AC Current frequency		AC Current frequency		
		INFORMATION		
Power meter		Built-in		
Communicati	on	RS-485 / Wi-Fi		
Indicator		LED		
Display / Clo	ud	DeltaSolar APP(iOS / Android)/ MyDeltaSolar Cloud		
Alarm		Mail Notification ⁷		
		MECHANISM		
Housing		Die casting		
Cooling		Convection cooling		
IP rating		IP65		
Weight		12 kg		
Dimensions		380 × 318 × 130 mm		
Country of m	anufacturer	China		
		REGULATIONS & DIRECTIVES		
Safety		IEC 62109-1 / -2 IEC 62619:2017 IEC 62040-1:2017 CE compliance		
Grid interface		CNS 15382 IEC 62116 AS4777.2:2020		
Emission		IEC 61000-6-4 IEC 61000-6-3		
Harmonics		EN 61000-3-12		
Variations an	d flicker	EN 61000-3-11		
Immunity EN 61000-6-2		EN 61000-6-2		
Immunity	ESD	IEC 61000-4-2		
	RS	IEC 61000-4-3		
	EFT	IEC 61000-4-4		
	Surge	IEC 61000-4-5		
	CS	IEC 61000-4-6		
	PFMF	IEC 61000-4-8		

- 2) H5E_220 with ATS BOX can support stand-alone mode function.
- 3) 200-500Vdc can support the full power.
- 4) 5kVA max. for Australia (AU / NZ)
- 5) 21.7A nom. for Australia (AU / NZ)
- 6) reactive power control disabled
- 7) In the event of an earth fault alarm, mail notification will be sent via the monitoring portal.

